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a b s t r a c t

A methodology is presented for bounding the higher Lp norms, 2 6 p 61, of the local
strain inside random media. We present optimal lower bounds that are given in terms of
the applied loading and volume fractions for random two phase composites. These bounds
provide a means to measure load transfer across length scales relating the excursions of the
local fields to applied loads. These results deliver tight upper bounds on the macroscopic
strength domains for statistically defined heterogeneous media.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Failure initiation in heterogeneous media is a multiscale
phenomenon. The applied load can be greatly amplified by
the local microstructure and can result in local stress and
strain concentrations, see for example Kelly and Macmillan
(1986). The presence of large local stress and strain often
precedes the appearance of nonlinear phenomena such as
fracture and yielding. Thus it is crucial to quantify load
transfer between length scales when considering failure
initiation inside multiscale heterogeneous materials. In this
paper we present a new method for quantifying load trans-
fer between length scales when the microstructure is
known only in a statistical sense. New tools are provided
for teasing out relationships that connect the local strain
field to applied macroscopic loads. These relationships
provide explicit criteria on the applied loads that are
necessary for failure initiation inside statistically defined
heterogeneous media. Quantities sensitive to local field
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behavior include the higher Lp norms of the local strain.
These strain measures are used to describe phenomena re-
lated to failure initiation inside polymers (Gosse and Chris-
tensen, 2001). This paper examines the local strain fields
inside statistically homogeneous two phase random elastic
media. We address the case when only the volume fractions
of the two materials are known. We develop a new method-
ology for bounding the Lp norms of the local strain inside
two phase heterogeneous random media. The method
developed in this work is analogous to the method pre-
sented in Alali and Lipton (2009) for bounding Lp norms
of the local stress inside two phase composites. We use
the methods developed here to deliver new explicit lower
bounds on the Lp norms of the local strain which are given
in terms of the applied loads, volume fractions, and elastic
constants of the two materials. Several new lower bounds
are presented for a ladder of progressively more compli-
cated macroscopic load cases and are valid for the full range
2 6 p 61. These bounds are shown to be optimal and pro-
vide a means to measure load transfer across length scales
relating the variations of the local strain to the applied mac-
roscopic loading. Here we have focused on lower bounds
since volume constraints alone do not exclude the exis-
tence of microstructures with rough interfaces for which
the Lp norms of local fields are divergent see Milton
(1986), Faraco (2003) and Leonetti and Nesi (1997). The re-
sults presented in this paper provide new quantitative tools
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for the study of failure initiation inside random heteroge-
neous media. For a given realization of the random med-
ium, the theory of failure initiation posits that failure is
initiated when certain rotational invariants of the local
elastic strain (or stress) exceed threshold values (Kelly
and Macmillan, 1986). Examples include the local hydro-
static strain component �H and the local deviatoric strain
component �D as well as combinations including

j�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�HÞ2 þ ð�DÞ2

q
see, (Gosse and Christensen, 2001). To

fix ideas we introduce the strength domain associated with
the norm of the local strain j�j for two phase statistically
homogeneous random elastic media. Here we suppose that
only the volume fractions h1 and h2 of the two elastic mate-

rials are known. The strength domain KSafe is defined to be
the set of applied constant strains �� such that j�j lies below
the failure threshold inside each component material al-
most surely for every microstructure realization of the ran-
dom medium with prescribed volume fractions h1 and h2.
An upper bound on the strength domain is defined to be
the set K of constant strains such that if �� lies outside K then
j�j has exceeded the threshold over some subset of non zero
volume inside one of the component materials for every
microstructure composed of materials one and two with
prescribed volume fractions h1 and h2, so

KSafe � K: ð1:1Þ

In Section 4 we apply the lower bounds on local fields to ob-
tain explicit, tight upper bounds on the macroscopic
strength domain for statistically homogeneous random
media. Recent related works provide optimal lower bounds
on local stress fields. The work presented in Alali and Lipton
(2009) provides new optimal lower bounds on both the lo-
cal shear stress and the local hydrostatic stress for random
media subjected to a series of progressively more general
applied macroscopic stresses. These bounds are explicit
and given in terms of volume fractions, elastic constants
of each phase, and the applied macroscopic stress. The work
presented in Chen and Lipton (2010) develops optimal low-
er bounds on the local hydrostatic stress field inside heter-
ogeneous thermoelastic media undergoing macroscopic
thermomechanical loading. These bounds are explicit and
given in terms of volume fractions, coefficients of thermal
expansion, elastic properties, and the applied macroscopic
thermal and mechanical loading. Earlier work provides
optimal lower bounds on local fields for random media sub-
jected to applied constant hydrostatic stress and strain and
for applied constant electric fields (Lipton, 2004, 2005,
2006). Those efforts deliver optimal lower bounds on the
Lp norms for the hydrostatic components of local stress
and strain fields as well as the magnitude of the local elec-
tric field for all p in the range 2 6 p 61. Other work exam-
ines the stress field around a single simply connected stiff
inclusion subjected to a remote constant stress at infinity
(Wheeler, 1993) and provides optimal lower bounds for
the supremum of the maximum principal stress. The work
presented in Grabovsky and Kohn (1995) provides an opti-
mal lower bound on the supremum of the maximum prin-
cipal stress for two-dimensional periodic composites
consisting of a single simply connected stiff inclusion in
the period cell. The recent work of (He, 2007) builds on
the earlier work of Lipton (2006), Lipton (2005) and devel-
ops lower bounds on the Lp norm of the local fields for sta-
tistically isotropic two-phase composites. However to date
those bounds have been shown to be optimal only for p ¼ 2,
their optimality for p > 2 remains to be seen. Optimal
upper and lower bounds on the L2 norm of local gradient
fields are given in Lipton (2001).

The paper is organized as follows. In the next section we
present the elastic boundary value problem for heteroge-
neous media. Section 3 lists optimal lower bounds for a
ladder of load cases of increasing generality. The micro-
structures that support local fields that attain the lower
bounds are introduced and discussed in this section. Upper
bounds on the strength domains for random media are
provided in Section 4. The proofs of the lower bounds on
the local strain are derived in Section 5. The attainability
of the lower bounds are proved in Section 6.

We conclude by introducing the projections and tensor
contractions useful for developing local strain bounds. Gen-
eric stress or strain tensor fields are denoted by wðxÞ and
gðxÞ. Contractions of w and g are defined by w : g ¼ wijgij

and jwj2 ¼ w : w, where repeated indices indicate summa-
tion. Products of fourth order tensors C and stress or strain
tensors w are written as Cw and are given by ½Cw�ij ¼ Cijklwkl;
and products of stresses or strains g with vectors v are gi-
ven by ½gv�i ¼ gijv j. The fourth order identity map on the
space of stresses or strains is denoted by I and
Iijkl ¼ 1=2ðdikdjl þ dildjkÞ. The projection onto the hydrostatic
part of wðxÞ is denoted by PH and is given explicitly by

PH
ijkl ¼

1
d

dijdkl and PHwðxÞ ¼ trwðxÞ
d

I: ð1:2Þ

The projection onto the deviatoric part of w(x) is denoted
by PD and I ¼ PH þPD with PDPH ¼ PHPD ¼ 0. For com-
pleteness we introduce the following notation. The rank
one matrix formed by taking the outer product of two unit
vectors a and b is denoted by a� b with elements
ða� bÞij ¼ aibj. The symmetric part of this matrix is de-
noted by a� b with elements ða� bÞij ¼ ðaibj þ ajbiÞ=2.

2. Elastic boundary value problem for heterogeneous
media

We present the canonical boundary value problem used
to describe local stress and strain fields inside statistically
homogeneous random heterogeneous materials (Golden
and Papanicolaou, 1983; Jikov et al., 1994; Milton, 2002;
Torquato, 2000). Every realization x of the heterogeneous
medium occupies Rd; d ¼ 2;3 and is composed of two
elastically isotropic materials with elasticity tensors de-
noted by C1 and C2. The bulk and shear moduli of material
one and two are denoted by j1 and l1, and j2 and l2

respectively. The isotropic elasticity tensor associated with
each component material is given by

Ci ¼ 2liP
D þ djiP

H; for i ¼ 1;2; ð2:1Þ

where d ¼ 2 for planar elastic problems and d ¼ 3 for the
three dimensional problem. Each realization of the random
medium is specified by the indicator functions of phase
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one and two denoted by v1ðx;xÞ and v2ðx;xÞ. For a given
realization v1ðx;xÞ takes the value 1 in phase one and zero
outside and v2ðx;xÞ ¼ 1� v1ðx;xÞ. The elastic tensor
associated with the two phase medium is denoted by
Cðx;xÞ and Cðx;xÞ ¼ v1ðx;xÞC

1 þ v2ðx;xÞC
2. Here the in-

dex x belongs to the sample space X and the associated
probability measure P is defined over X. For the class of
statistically homogeneous or strictly spatially stationary
and ergodic random media the joint distribution of the sets
of indicator functions (for n ¼ 1;2; . . .)

v1ðx1;xÞ;v1ðx2;xÞ;v1ðx3;xÞ; . . . ;v1ðxn;xÞ ð2:2Þ

are invariant under all translations and the ensemble aver-
ages of v1 coincide with the mean value hv1i defined as the
limit of volume averages taken over progressively larger
volumes (Golden and Papanicolaou, 1983; Jikov et al.,
1994; Torquato, 2000). The volume (area) fractions of
phase one and two are given by the mean values;

h1 ¼ hv1i and h2 ¼ hv2i ð2:3Þ
and h1 þ h2 ¼ 1. In what follows we suppress the variable x
when describing solutions associated with a fixed micro-
structure realization. A constant ‘‘macroscopic’’, strain �� is
imposed on the heterogeneous material. The local strain
is expressed as the sum of a mean zero fluctuation and ��,
i.e., �ðxÞ ¼ �̂ðxÞ þ ��, with h�̂i ¼ 0. The strain fluctuation is
given in terms of the displacement field û with
�̂ijðxÞ ¼ ð@jûiðxÞ þ @iûjðxÞÞ=2. The stress field inside the com-
posite is denoted by r ¼ rðxÞ and the equation of elastic
equilibrium inside each phase is given by

divr ¼ 0: ð2:4Þ

The local elastic strain �ðxÞ is related to the local stress
through the constitutive law

rðxÞ ¼ CðxÞ�ðxÞ: ð2:5Þ

The traction at an interface with unit normal vector n
pointing into material 2 is denoted by the product rn
and is the vector with components given by ½rn�i ¼ rijnj.
Perfect contact between the component materials is as-
sumed, thus both the displacement û and traction rn are
continuous across the two phase interface, i.e.,

ûj1 ¼ ûj2 ; ð2:6Þ
rj1 n ¼ rj2 n: ð2:7Þ

Here the subscripts indicate the side of the interface that the
displacement and traction fields are evaluated on. The effec-
tive ‘‘macroscopic’’ constitutive law for the random hetero-
geneous medium is given by the constant effective elasticity
tensor Ce (Golden and Papanicolaou, 1983; Jikov et al., 1994;
Milton, 2002; Torquato, 2000) relating the average imposed
macroscopic strain �� to the average stress r,

rij ¼ Ce
ijkl

��kl: ð2:8Þ
In what follows bounds are derived on the moments of the
local strain � defined on Rd. Here the moments of a field q
are defined to be hjqjri1=r . For future reference we remind
the reader that limr!1hjqjri1=r is the same as the kqk1 norm
more commonly defined as the essential supremum of q,
see Lieb and Loss (2001).
3. Optimal lower bounds on the local strain inside
random composites

In this section we present new optimal lower bounds
on the local strain for a ladder of progressively more gen-
eral sets of applied macroscopic strain. As we progress to
more general load cases we will apply additional hypoth-
eses on the shear and bulk moduli of the constituent
materials. In this section we provide lower bounds for
the following applied macroscopic load cases: (1) lower
bounds on the full local strain for applied hydrostatic
macroscopic strains, (2) lower bounds on the full local
strain inside the material with larger shear modulus for
elastic problems with applied macroscopic shear strains,
(3) lower bounds on the full local strain for l1 ¼ l2, that
are seen to be optimal for a special class of applied mac-
roscopic strains, (4) lower bounds on the local deviatoric
component of the strain that are optimal for a special
class of applied macroscopic strains, and 5) lower bounds
on the hydrostatic and deviatoric components of the local
strain for the full set of applied macroscopic strains sub-
ject to the hypotheses l1 ¼ l2 and j1 ¼ j2 respectively.
In what follows will adopt the notation jþ ¼
maxfj1;j2g;lþ ¼maxfl1;l2g; j� ¼minfj1;j2g, and
l� ¼minfl1;l2g.

For clarity the proofs of the bounds presented in this
section are postponed to Section 5. The optimality of these
bounds are proved in Section 6.

3.1. Hydrostatic applied strain

In this section we consider applied macroscopic strains
that are hydrostatic, i.e., of the form �� ¼ pI where p is a
constant and I is the d� d identity matrix. Here it is as-
sumed that the elastic materials inside the heterogeneous
medium are well-ordered i.e., ðl1 � l2Þðj1 � j2Þ > 0 and
without loss of generality we will suppose in this section
that l1 > l2 and j1 > j2. We present lower bounds that
are optimal for all applied hydrostatic strains. We show
that the configurations that attain the bounds are given
by the Hashin–Shtrikman coated sphere and (cylinder)
assemblages (Hashin and Shtrikman, 1962). We now de-
scribe the coated sphere assemblage made from a core of
material one with a coating of material two and note that
the coated cylinder assemblage is constructed similarly.
We first fill R3 with an assemblage of spheres with sizes
ranging down to the infinitesimal. Inside each sphere one
places a smaller concentric sphere filled with ‘‘core’’ mate-
rial one and the surrounding coating is filled with material
two. The volume fractions of material one and two are ta-
ken to be the same for all of the coated spheres. We start by
presenting optimal lower bounds on the moments of the
local strain inside material one.

Proposition 3.1 (Optimal lower bounds on the moments of
the local strain in material one). Consider any heterogeneous
medium with volume (area) fraction of materials one and two
given by h1 and h2, then for an applied hydrostatic macro-
scopic strain �� ¼ pI the local strain field inside material one
satisfies
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hv1ðxÞj�ðxÞj
rh1=r P h1=r

1

ffiffiffi
d
p
ðj2 þ 2 d�1

d l2Þ
h1j2 þ h2j1 þ 2 d�1

d l2

pj j;

for 2 6 r 61: ð3:1Þ

Moreover for d ¼ 2ð3Þ and for every r in 2 6 r 61 the lower
bound is attained by the local strain inside the coated cylinder
(sphere) assemblage with core of material one and coating of
material two.

A similar result holds for the local strain field inside
material two.

Proposition 3.2 (Optimal lower bounds on the moments of
the local strain in material two). Consider any heterogeneous
medium with volume (area) fraction of materials one and two
given by h1 and h2, then for an applied hydrostatic macro-
scopic strain �� ¼ pI the local strain field inside material two
satisfies

hv2ðxÞj�ðxÞj
ri1=r P h1=r

2

ffiffiffi
d
p
ðj1 þ 2 d�1

d l1Þ
h1j2 þ h2j1 þ 2 d�1

d l1

pj j;

for 2 6 r 61: ð3:2Þ

Moreover for d ¼ 2ð3Þ and for every r in 2 6 r 61 the lower
bound is attained by the local strain inside the coated cylinder
(sphere) assemblage with core of material two and coating of
material one.

The optimal lower bound on the L1 norm of the magni-
tude of the local strain inside a random composite is given
by:

Proposition 3.3 (Optimal lower bounds on the L1 norm of
the local strain). Consider any heterogeneous medium with
volume (area) fraction of materials one and two given by h1

and h2, then for an applied hydrostatic macroscopic strain
�� ¼ pI the local strain field inside the composite satisfies

kj�ðxÞjkL1ðQÞ P

ffiffiffi
d
p
ðj1 þ 2 d�1

d l1Þ
h1j2 þ h2j1 þ 2 d�1

d l1

j p j : ð3:3Þ

Moreover for d ¼ 2 the lower bound is attained by the local
strain inside the coated cylinder assemblage with core of
material two and coating of material one. For d ¼ 3 the lower
bound is attained by the local strain inside the coated sphere
assemblage with core of material two and coating of material
one provided that the bulk and shear moduli satisfy the con-
straint j1 6 3j2 þ 8l1=3.

Arguments similar to those given in Section 5.1 deliver
lower bounds on the local strain field when the two mate-
rials are not well ordered, i.e., l1 > l2 and j1 < j2. How-
ever explicit calculation shows that the strain fields
inside the coated sphere assemblage do not saturate the
lower bounds for any combination of core and coating
material when the materials are not well-ordered.

3.2. Deviatoric applied strain

In this section the applied macroscopic strains are taken
to be purely deviatoric, i.e., PD��D ¼ ��D. For two dimen-
sional elastic problems the deviatoric strain tensor can be
expressed as the symmetric tensor product of two orthog-
onal unit vectors a and b, i.e., ��D ¼ eða� bÞ, where e is an
arbitrary scalar. In three dimensions this type of strain ten-
sor is referred to as a pure shear strain. For two-dimen-
sional elastic problems we present lower bounds on the
local strain that are optimal for all applied deviatoric
strains and for three dimensional problems we show that
the lower bounds are optimal for any applied pure shear
strain. The bounds are attained by simple laminates made
by layering material one with material two in the propor-
tions h1 and h2 respectively. The direction normal to the
layers is denoted by n. The optimal choice of layer direc-
tion is given by n ¼ a or n ¼ b. We present optimal lower
bounds on the local strain inside the component material
with the larger shear modulus. The volume fraction and
indicator functions associated with material having larger
shear modulus are denoted by hþ and vþ.

Proposition 3.4 (Optimal lower bounds on the moments of
the local strain inside the phase with larger shear modu-
lus). Consider any heterogeneous medium with area (volume)
fraction of materials one and two given by h1 and h2, then for
an applied deviatoric macroscopic strain ��D the strain field
inside the material with larger shear modulus satisfies

hvþj�ðxÞj
ri1=r P h1=r

þ
l�

h1l2 þ h2l1

��D
�� ��; for 2 6 r 61:

ð3:4Þ

Moreover for d ¼ 2;3, when ��D ¼ eða� bÞ then the lower
bound (3.4) is attained by the strain field inside a simple lam-
inate for every r in 2 6 r 61. Here the layering direction in
the optimal laminate is given by n ¼ a or n ¼ b.

The next result provides a lower bound on the deviator-
ic component of the local strain inside the material with
larger shear modulus.

Proposition 3.5 (Optimal lower bounds on the moments of
the deviatoric component of the local strain inside the
material with larger shear modulus). Consider any heteroge-
neous medium with area (volume) fraction of materials one
and two given by h1 and h2, then for an applied deviatoric
macroscopic strain ��D the deviatoric component of the local
stain field inside the material with larger shear modulus
satisfies

hvþ j PD�ðxÞjri1=r P h1=r
þ

l�
h1l2 þ h2l1

��D
�� ��; for 2 6 r 61:

ð3:5Þ

For d ¼ 2;3, when ��D ¼ eða� bÞ then the lower bound (3.5) is
attained by a simple laminate. The vector normal to the layer
interface for the optimal laminate is chosen according to
n ¼ a or n ¼ b.
3.3. Lower bounds on the local strain that are optimal for a
special class of applied macroscopic strain states

In this section we start by considering heterogeneous
materials made from two elastic materials sharing the
same shear modulus, i.e., l1 ¼ l2 ¼ l. We present new
lower bounds on the full local strain field that hold for
every applied macroscopic strain ��. The lower bounds are
shown to be optimal for special subsets E1; E2 of applied
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strains. The subsets E1; E2 correspond to the set of applied
constant strains for which one can construct a confocal
ellipsoid assemblage that has constant and purely hydro-
static stress and strain fields inside the core phase (Grab-
ovsky and Kohn, 1995; Milton, 2002). The set E1 of
applied strains is given explicitly by the parametric repre-
sentation developed in Milton (2002)

�� ¼
dj2 þ ðd�1Þl

d

d2ðj1 � j2Þ

 !
I þ h2M; ð3:6Þ

where M ranges over the totality of positive semidefinite
d� d matrices with unit trace. For each �� in E1 one can con-
struct a confocal ellipsoid assemblage with core material
one and coating material two such that the local strain in-
side the core is constant and hydrostatic. Here the axes of
the ellipsoids correspond to the principle directions of ��.
The analogous parameterization of the set of applied
strains for which the local strain is constant and hydro-
static for suitably constructed confocal ellipsoids with core
two is obtained by interchanging subscripts one and two in
(3.6). The associated set of macroscopic strains is denoted
by E2. We present optimal lower bounds on the local strain
inside material one that hold for all composites with
l ¼ l1 ¼ l2.

Proposition 3.6 (Optimal lower bounds on the local strain
inside material one with l1 ¼ l2.). Consider any heteroge-
neous medium with area (volume) fraction of materials one
and two given by h1 and h2, then for any applied macroscopic
strain �� the strain field inside material one satisfies

hv1ðxÞj�ðxÞj
ri1=r P h1=r

1

j2 þ 2 d�1
d l

h1j2 þ h2j1 þ 2 d�1
d l

PH��
�� ��;

for 2 6 r 61: ð3:7Þ

Moreover for d ¼ 2ð3Þ and for every r in 2 6 r 61 if �� lies in
E1 the lower bound is attained by the local strain inside the
confocal-ellipsoid (confocal-ellipse) assemblage.

A similar result holds for the strain fields inside materi-
als two.

Proposition 3.7 (Optimal lower bounds on the local strain
inside material two with l1 ¼ l2.). Consider any heteroge-
neous medium with area (volume) fraction of materials one
and two given by h1 and h2, then for any applied macroscopic
strain �� the strain field inside material two satisfies

hv2ðxÞj�ðxÞj
ri1=r P h1=r

2

j1 þ 2 d�1
d l

h1j2 þ h2j1 þ 2 d�1
d l

PH��
�� ��;

for 2 6 r 61: ð3:8Þ

Moreover for d ¼ 2ð3Þ and for every r in 2 6 r 61 if �� lies in
E2 the lower bound is attained by the local strain inside the
confocal-ellipsoid (confocal-ellipse) assemblage.

We conclude this subsection by considering the two
trivial lower bounds on the moments of the deviatoric
component of the local strain given by hv1ðxÞj
PD�ðxÞjri1=r P 0 and hv2ðxÞjPD�ðxÞjri1=r P 0. In what fol-
lows we make no hypothesis on the bulk and shear moduli
of the component materials and point out that the trivial
bounds are optimal for two subsets of applied macroscopic
strains ��. The subsets are denoted by Ê1 and Ê2 and these
sets correspond to E1 and E2 with l ¼ l2 and l ¼ l1

respectively. These observations are expressed in the fol-
lowing two propositions.

Proposition 3.8 (Optimal lower bounds on the deviatoric
component of the local strain inside material one). Consider
any heterogeneous medium with volume (area) fraction of
materials one and two given by h1 and h2, then for any applied
macroscopic strain �� it is evident that the strain field inside
material one satisfies

hv1ðxÞjPD�ðxÞjri1=r P 0; for 2 6 r 61: ð3:9Þ

Moreover for d ¼ 2ð3Þ and for every r in 2 6 r 61 if �� lies in
Ê1 the lower bound is attained by the local strain inside the
confocal-ellipsoid (confocal-ellipse) assemblage with a core
of material one.

A similar result holds for strain fields inside material
two.

Proposition 3.9 (Optimal lower bounds on the deviatoric
component of the local strain inside material two). Consider
any heterogeneous medium with volume (area) fraction of
materials one and two given by h1 and h2, then for any applied
macroscopic strain �� it is evident that the strain field inside
material two satisfies

hv2ðxÞjPD�ðxÞjri1=r P 0; for 2 6 r 61: ð3:10Þ

For d ¼ 2ð3Þ and for every r in 2 6 r 61 if �� lies in Ê2 the
lower bound is attained by the local strain inside the confo-
cal-ellipsoid (confocal-ellipse) assemblage with a core of
material two.
3.4. Optimal lower bounds for general applied macroscopic
strains and l1 ¼ l2

In this section we consider two-phase heterogeneous
media subject to a general applied macroscopic strain ��.
We suppose that the two materials share the same shear
modulus l ¼ l1 ¼ l2, and we present optimal lower
bounds on the hydrostatic part of the local strain. The first
result is a lower bound on all moments of the local hydro-
static strain inside each material.

Proposition 3.10 (Optimal lower bounds on the local
hydrostatic strain inside material one with l1 ¼ l2 for media
subjected to a general applied strain). Consider any hetero-
geneous medium with volume (area) fraction of materials one
and two given by h1 and h2, then for any applied macroscopic
strain �� the hydrostatic component of the local strain field
inside material one satisfies

hv1ðxÞjPH�ðxÞjri1=r P h1=r
1

j2 þ 2 d�1
d l

h1j2 þ h2j1 þ 2 d�1
d l

PH��
�� ��;

for 2 6 r 61: ð3:11Þ
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Moreover for d ¼ 2;3, the lower bound (3.11) is attained for
every r in 2 6 r 61 by the local hydrostatic strain field inside
laminates made from layering the two materials in the pre-
scribed proportions h1 and h2. Here the layering can be made
along any direction n.

A similar result holds for strain fields inside material
two.

Proposition 3.11 (Optimal lower bounds on the local
hydrostatic strain inside material two with l1 ¼ l2 for
media subjected to a general applied strain). Consider any
heterogeneous medium with volume (area) fraction of mate-
rials one and two given by h1 and h2, then for any applied
macroscopic strain �� the hydrostatic component of the local
strain field inside material two satisfies

hv2ðxÞjPH�ðxÞjri1=r P h1=r
2

j1 þ 2 d�1
d l

h1j2 þ h2j1 þ 2 d�1
d l

PH��
�� ��;

for 2 6 r 61: ð3:12Þ
Moreover for d ¼ 2;3, the lower bound (3.12) is attained for
every r in 2 6 r 61 by the local hydrostatic strain field inside
laminates made from layering the two materials in the pre-
scribed proportions h1 and h2. Here the layering can be made
along any direction n.

The next result provides an optimal result on the L1

norm of the local strain inside a heterogeneous medium.

Proposition 3.12. (Optimal lower bounds on the L1 norm of
the local hydrostatic strain for composites subjected to a
general applied strain and l1 ¼ l2). Consider any heteroge-
neous medium with volume (area) fraction of materials one
and two given by h1 and h2, then for any applied macroscopic
strain �� the hydrostatic component of the local strain field
satisfies

kjPH�ðxÞjk1 P
jþ þ 2 d�1

d l
h1j2 þ h2j1 þ 2 d�1

d l
j PH� j : ð3:13Þ

Moreover for d ¼ 2;3, the lower bound (3.13) is attained by
the local hydrostatic strain field inside a simply layered mate-
rial. Here the layering can be made along any direction n.
3.5. Optimal lower bounds for general applied macroscopic
strains and j1 ¼ j2

In this section we consider two-phase heterogeneous
media subjected to any applied macroscopic strain ��. We
suppose that the two materials share the same bulk mod-
uli, i.e., j ¼ j1 ¼ j2. For this case we present optimal lower
bounds on the moments of the deviatoric component of
the local strain inside the material possessing the largest
shear modulus.

Proposition 3.13. (Optimal lower bounds on the moments of
the deviatoric component of the local strain for a general
applied macroscopic strain and j1 ¼ j2). Consider any
heterogeneous medium with volume (area) fraction of mate-
rials one and two given by h1 and h2, then for any applied
macroscopic strain �� the deviatoric component of the local
strain inside the material with the largest shear stiffness
satisfies
hvþðxÞjPD�ðxÞjri1=r P h1=r
þ

l�
h1l2 þ h2l1

PD��
�� ��;

for 2 6 r 61: ð3:14Þ

For d ¼ 2 let w1;w2 be the orthonormal system of eigenvectors
for ��. Then for every 2 6 r 61, the lower bound (3.14) is at-
tained by the deviatoric component of the local strain inside a
simple laminate with layer normal n ¼ w1þw2ffiffi

2
p .
Remark. For d ¼ 3 a straightforward calculation based
upon the explicit solution for the strain field inside a sim-
ple laminate given by (6.13)–(6.16) shows that the bound
(3.14) is not attained by a simple laminate.
4. Upper bounds on the macroscopic strength domain
for random heterogeneous materials

In this section we apply the optimal lower bounds on
local strain fields to present new tight upper bounds for
strength domains. We begin by considering the case of
hydrostatic applied loads of the form pI. For this case the
local strain is of the form �ðxÞ ¼ pI þ �̂ðxÞ and h�i ¼ pI.
The local stress is related to the local strain through (2.5)
and satisfies the equations of elastic equilibrium specified
in Section 2. In what follows we present an upper bound
on the strength domain associated with norm of the local
strain inside the composite. We suppose that failure is ini-
tiated inside phase one when j�ðxÞj ¼ F1 over some subset
of phase one and inside phase two when j�ðxÞj ¼ F2 over
some subset of phase two. We suppose that only the vol-
ume fractions are known, i.e., hv1i ¼ h1 and hv2i ¼ 1� h1

and we define the macroscopic strength domain KSafe to
be the set of applied strains pI for which the local strain
field �ðxÞ satisfies the local constraints

v1ðxÞj�ðxÞj < F1; v2ðxÞj�ðxÞj < F2: ð4:1Þ

We write

M1ðh1Þ ¼
ffiffiffi
3
p
ðj2 þ 4

3 l2Þ
h1j2 þ h2j1 þ 4

3 l2

and

M2ðh1Þ ¼
ffiffiffi
3
p
ðj1 þ 4

3 l1Þ
h1j2 þ h2j1 þ 4

3 l1

ð4:2Þ

and define the upper bound K to be the set of matrices of
the form pI that satisfy the constraints given by

jpjM1ðh1Þ 6 F1 and jpjM2ðh1Þ 6 F2: ð4:3Þ

We now present a tight upper bound on KSafe.

Proposition 4.1 (Upper bound on the macroscopic
strength domain for hydrostatic applied loads). Suppose
that l1 > l2; j1 > j2; F1 P F2 and h1 is given, then
KSafe � K. Moreover K is a tight upper bound in that pI 2 K
implies that the local strain j�ðxÞj does not exceed the failure
threshold inside both phases for the coated sphere construc-
tion with core material two and coating material one. And
pI R K implies that the threshold has been exceeded every-
where inside the core phase of the coated sphere assemblage.
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Proof. Setting r ¼ 1 in (3.1) and (3.2) gives

jpjM1ðh1Þ 6 kv1j�jk1 and jpjM2ðh1Þ 6 kv2j�jk1 ð4:4Þ

from which the upper bound KSafe � K follows. Now for the
coated sphere assemblage with a core phase of material
two an easy computation, using the explicit formula for
the local strain field (6.1), shows that v2ðxÞj�ðxÞj ¼
jpjM2ðh1Þ. From this observation and the fact that
M2 > M1, the tightness of the upper bound follows. Next
consider two-phase heterogeneous media subject to a gen-
eral imposed macroscopic strain �� ¼ h�i. The two materials
are assumed to share the same shear modulus l ¼ l1 ¼ l2.
The local stress is related to the local strain through (2.5)
and satisfies the equations of elastic equilibrium specified
in Section 2. We suppose that only the volume fractions
are known and we define the macroscopic strength domain
KSafe to be the set of applied strains �� for which the local
strain �ðxÞ satisfies the local constraints

v1ðxÞjPH�ðxÞj < F1; v2ðxÞjPH�ðxÞj < F2: ð4:5Þ

We write

H1ðh1Þ ¼
j2 þ 4

3 l
h1j2 þ h2j1 þ 4

3 l
and

H2ðh1Þ ¼
j1 þ 4

3 l
h1j2 þ h2j1 þ 4

3 l
ð4:6Þ

and define the upper bound K to be the set of matrices ��
that satisfy the constraints given by

jtr��jffiffiffi
3
p H1ðh1Þ 6 F1 and

jtr��jffiffiffi
3
p H2ðh1Þ 6 F2: ð4:7Þ

We now present a tight upper bound on KSafe. We note that
in this case no assumption is made on either the order of
j1;j2 or the order of F1; F2. h
Proposition 4.2 (Upper bound on the macroscopic strength
domain for two-phase media withl1 ¼ l2 subjected to a gen-
eral applied strain). Let h1 be given. Then KSafe � K. Moreover
K is a tight upper bound in that �� 2 K implies that the hydro-
static component of the local strain jPH�ðxÞj does not exceed
the failure threshold inside both phases for simple layered
materials. And �� R K implies that the threshold has been
exceeded everywhere inside at least one of the two phases
for simple layered materials. Here the layering can be made
along any direction n.
Proof. Setting r ¼ 1 in (3.11) and (3.12) gives

jtr��jffiffiffi
3
p H1ðh1Þ 6 kv1jPH�jk1 and

jtr��jffiffiffi
3
p H2ðh1Þ 6 kv2jPH�jk1

ð4:8Þ

from which the upper bound KSafe � K follows. Now for a
simple layered material an easy computation, using the ex-
plicit formulas for the strain field inside each phase (6.13)–
(6.16), shows that

v1jPH�ðxÞj ¼ jtr��jffiffiffi
3
p H1ðh1Þ and v2jPH�ðxÞj ¼ jtr��jffiffiffi

3
p H2ðh1Þ:
The tightness of the upper bound follows from these obser-
vations. h
5. Lower bounds on the local strain

In this section, we derive the lower bounds on the local
strain inside random heterogeneous media listed in Sec-
tion 3. Their attainability is established in Section 6. The
lower bounds are established with the aid of two inequal-
ities that easily follow from Jensen’s inequality. Let wðxÞ be
a d� d stress field defined on Rd. Then

hviðxÞwðxÞ : wðxÞiP 1
hi
hviðxÞwðxÞi
�� ��2 ð5:1Þ

and

hwðxÞ : wðxÞiP hwðxÞij j2: ð5:2Þ

These inequalities are strict in that equality holds in (5.1)
only if wðxÞ is constant on the set of points where vi ¼ 1
and in (5.2) only if wðxÞ is constant everywhere.

5.1. Proofs of Propositions 3.1–3.3

In this section we suppose that the applied macroscopic
strain is hydrostatic, i.e., �� ¼ pI. It is assumed that the elas-
tic materials are well-ordered and we suppose that l1 > l2

and j1 > j2. For this case the lower bounds on the hydro-
static component of the local strain are given by Lipton
(2006)

hv1ðxÞjPH�ðxÞjri1=r P h1=r
1

ffiffiffi
d
p
ðj2 þ 2 d�1

d l2Þ
h1j2 þ h2j1 þ 2 d�1

d l2

pj j

for 2 6 r 61 ð5:3Þ

and

hv2ðxÞjPH�ðxÞjri1=r P h1=r
2

ffiffiffi
d
p
ðj1 þ 2 d�1

d l1Þ
h1j2 þ h2j1 þ 2 d�1

d l1

pj j;

for 2 6 r 61 ð5:4Þ

kjPH�ðxÞjk1 P

ffiffiffi
d
p
ðj1 þ 2 d�1

d l1Þ
h1j2 þ h2j1 þ 2 d�1

d l1

j p j : ð5:5Þ

It is pointed out that similar bounds hold for the non-well
ordered case (Lipton, 2006). The lower bounds (3.1)–(3.3)
follow immediately noting that the norm of the local strain
is given by j�ðxÞj ¼ ðjPH�ðxÞj2 þ jPD�ðxÞj2Þ1=2 so j�ðxÞjP
jPH�ðxÞj.

5.2. Proofs of Propositions 3.4 and 3.5

In what follows we make no assumption on the magni-
tudes of the bulk modulus of each component material. We
examine the local strain field inside the material with lar-
ger shear modulus and without loss of generality we sup-
pose that l1 > l2. We derive new lower bounds on the
local strain inside material one that hold for any applied
macroscopic deviatoric strain. In subsequent sections these
lower bounds are shown to be optimal for applied macro-
scopic deviatoric strains in two dimensions and for applied
macroscopic strains that are pure shear strains in three
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dimensions. We start by taking w ¼ PDr in Eq. (5.1) to ob-
tain the basic lower bound given by

hv1P
D�ðxÞ : PD�ðxÞiP 1

h1
hv1P

D�ðxÞi
�� ��2: ð5:6Þ

In what follows we obtain a lower bound for the right hand
side of (5.6). Applying the definition of the effective elastic
tensor gives

Ce��¼ ðC2 þv1ðC
1 � C2Þ

� �
�ðxÞi ¼ C2�þ ðC1 � C2Þhv1�ðxÞ

D E
:

ð5:7Þ

We apply the deviatoric projection on both sides of equa-
tion Eq. (5.7) and solve for hv1P

D�ðxÞi to obtain

hv1P
D�ðxÞi ¼ 1

2ðl1 � l2Þ
PDðCe � C2Þ��: ð5:8Þ

Up to this point we have assumed that the applied macro-
scopic strain was given by an arbitrary d� d matrix. From
now on in this subsection we will assume that the applied
macroscopic strain is taken to be deviatoric for both two
and three dimensional elastic problems, i.e.,

�� ¼ ��D ¼ PD��D ð5:9Þ

and one obtains

hv1P
D�ðxÞi ¼ 1

2ðl1 � l2Þ
ðPDCe��� 2l2P

D��Þ

¼ 1
2ðl1 � l2Þ

ðPDCePD��� 2l2P
D��Þ: ð5:10Þ

We apply the Cauchy–Schwarz inequality to find that

hv1P
D�ðxÞi

�� ��2 P
1

ð2l1 � 2l2Þ
2

ðCePD�� : PD��� 2l2P
D�� : PD��Þ2

jPD��j2
:

ð5:11Þ

The effective elasticity tensor satisfies the following well
known estimate (Paul, 1960)

CePD�� : PD��P hC�1ðxÞi�1PD�� : PD��

¼ 2l1l2

h1l2 þ h2l1
jPD��j2: ð5:12Þ

Using Eq. (5.12) one obtains

CePD�� : PD��� 2l2P
D�� : PD��P

h1l2ðl1 � l2Þ
h1l2 þ h2l1

PD��
�� ��2:

ð5:13Þ

Because l1 > l2, and after some simplification, we obtain
from Eqs. (5.11) and (5.13) that

hv1P
D�ðxÞi

�� ��2 P
h2

1l2
2

ðh1l2 þ h2l1Þ
2 PD��
�� ��2 ð5:14Þ

and it follows from Eq. (5.6) that

hv1jPD�ðxÞj2iP h1
l2

2

ðh1l2 þ h2l1Þ
2 PD��
�� ��2: ð5:15Þ

For p and q such that p P 1 and 1=pþ 1=q ¼ 1, we apply
Hölder’s inequality to find that

h1=q
1 hv1jPD�ðxÞj2pi1=p P hv1jPD�ðxÞj2i ð5:16Þ
and hence the inequality

hv1jPD�ðxÞj2pi1=p P h1=p
1

j2 þ 2 d�1
d l

h1j2 þ h2j1 þ 2 d�1
d l

 !2

PD��
�� ��2;
ð5:17Þ

for 1 6 p 61. The bound (3.5) now follows immediately
from (5.17). The bound (3.4) also follows from (5.17) and
on noting that

hv1 j �ðxÞj
ri1=r P hv1 j PD�ðxÞjri1=r

; for 2 6 r 61:
ð5:18Þ
5.3. Proofs of Propositions 3.6, 3.7, 3.10–3.12

In this subsection the applied macroscopic strain is as-
sumed to be any constant d� d strain tensor, d ¼ 2;3. In
what follows we suppose that the two component materi-
als share the same shear modulus, i.e., l ¼ l1 ¼ l2, and we
derive the lower bounds given by (3.7), (3.8), (3.11)–(3.13).
In Section 6 the lower bounds on the full local strain are
shown to be optimal for special sets E1 and E2 and the low-
er bounds on the hydrostatic component of the local strain
is shown to be optimal for all applied macroscopic strains.
The dilatational strain inside material one satisfies the fol-
lowing estimate

hv1P
H�ðxÞ : PH�ðxÞiP 1

h1
hv1P

H�ðxÞi
�� ��2; ð5:19Þ

which can be seen by taking w ¼ PH� in Eq. (5.1). From Eq.
(5.7) and since l1 ¼ l2, one obtains

Ce�� ¼ C2�þ 2ðj1 � j2ÞPHhv1�ðxÞi: ð5:20Þ

For a composite consisting of two isotropic phases of equal
shear moduli (l1 ¼ l2 ¼ l), Hill’s relation (Hill, 1963)
gives

Ce ¼ 2lPD þ djePH; ð5:21Þ

where

je ¼ ðh1j1 þ h2j2Þ �
h1h2ðj1 � j2Þ2

h1j2 þ h2j1 þ 2 d�1
d l

: ð5:22Þ

Substitution of (5.21) into (5.20) and solving for PHhv1�ðxÞi
gives

PHhv1�ðxÞi ¼
je � j2

j1 � j2
PH�: ð5:23Þ

From estimate (5.19) we recover

hv1P
H�ðxÞ : PH�ðxÞiP 1

h1

je � j2

j1 � j2

� �2

PH�
�� ��2 ð5:24Þ

and using the formula for je given by (5.22), we express
(5.24) as

hv1P
H�ðxÞ : PH�ðxÞiP h1

j2 þ 2 d�1
d l

h1j2 þ h2j1 þ 2 d�1
d l

 !2

PH�
�� ��2:
ð5:25Þ

An application of Hölder’s inequality to (5.25) delivers
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hv1jPH�ðxÞj2pi1=p P h1=p
1

j2 þ 2 d�1
d l

h1j2 þ h2j1 þ 2 d�1
d l

 !2

PH��
�� ��2;
ð5:26Þ

for 1 6 p 61, and the bound Eq. (3.11) follows. Identical
arguments give lower bounds on the moments of the
hydrostatic strain inside phase two, bound (3.12). The L1

bound, Eq. (3.13), follows from the bounds (3.11) and
(3.12) by taking r ¼ 1 noting that kjPH�ðxÞjk1 P
kvijPH�ðxÞjk1 for i ¼ 1;2. The bounds (3.7) and (3.8) follow
from the bounds (3.11) and (3.12) and the fact that

hviðxÞj�ðxÞj
ri1=r P hviðxÞjPH�ðxÞjri1=r

: ð5:27Þ
Fig. 1. Hashin–Shtrikman coated cylinder assemblage.
5.4. Proof of Proposition 3.13

In this subsection no constraints are placed on the ap-
plied macroscopic strain. The applied macroscopic strain
can be any constant d� d stress tensor, d ¼ 2;3. In what
follows we suppose that the two component materials
share the same bulk modulus, i.e., j ¼ j1 ¼ j2 and we de-
rive new lower bounds on the local Von Mises strain inside
the material with greater shear stiffness. To fix ideas we
suppose that material one has the greater shear stiffness,
i.e., l1 > l2. We will establish the lower bound Eq. (3.14)
with the aid of the following observation whose proof is
provided in Alali and Lipton (2009).

Form of effective stiffness tensor for mixtures of two
elastically isotropic materials having common bulk
modulus.

For j ¼ j1 ¼ j2, the effective elasticity tensor Ce can be
written as

Ce ¼ PDCePD þ djPH: ð5:28Þ

Choosing w ¼ PD� in Eq. (5.1) gives

hv1P
D�ðxÞ : PD�ðxÞiP 1

h1
hv1P

D�ðxÞi
�� ��2: ð5:29Þ

We notice from Eq. (5.28) that Ce commutes with PD. Thus
Eq. (5.8) becomes

hv1P
D�ðxÞi ¼ 1

2ðl1 � l2Þ
ðCe � 2l2ÞPD�� ð5:30Þ

and we apply the Cauchy–Schwarz inequality to find that

hv1P
D�ðxÞi

�� ��2 P
1

ð2l1 � 2l2Þ
2

ðCePD�� : PD��� 2l2P
D�� : PD��Þ2

jPD��j2
:

ð5:31Þ

Application of (5.12) to (5.31) gives

CePD�� :PD���2l2P
D�� :PD��P

h1l2ðl1�l2Þ
h1l2þh2l1

PD��
�� ��2: ð5:32Þ

We easily see from Eqs. (5.31) and (5.32) that

hv1P
D�ðxÞi

�� ��2 P
h2

1l2
2

ðh1l2 þ h2l1Þ
2 PD��
�� ��2 ð5:33Þ

and it follows from Eq. (5.29) that
hv1P
D�ðxÞ : �ðxÞiP h1

l2
2

ðh1l2 þ h2l1Þ
2 PD��
�� ��2: ð5:34Þ

The bound (3.14) follows immediately from Hölder’s
inequality applied to the left hand side of (5.34).

6. Microstructures that support optimal local fields

It is well known that the coated sphere, coated ellipsoid
and laminated microstructures possess optimal effective
elastic properties, for reviews of the literature see Milton
(2002), Torquato (2000). In the following subsections we
show that these microstructures possess optimal local field
properties as well.

6.1. The coated sphere construction and optimal lower bounds
on local strain fields

In this section, it is shown that the lower bounds pre-
sented in Section (3.1) are attained by the stress fields in-
side the Hashin–Shtrikman (Hashin, 1962; Hashin and
Shtrikman, 1962) coated cylinder and sphere assemblages,
see Fig. 1. We introduce the normalized Lp norm of a field f
over a domain S by ðjSj�1 R

S jf ðxÞj
pdxÞ1=p. One striking fea-

ture of the fields inside the coated sphere and cylinder
assemblage is that the normalized Lp norm of the local
stress or strain taken over a prototypical coated cylinder
or sphere is the same as the Lp norm of the whole assem-
blage. Thus the Lp norms of local fields inside these assem-
blages are obtained by computing the Lp norm of a
prototypical coated sphere or disk. Assume that the ap-
plied field �� is hydrostatic, �� ¼ pI. The strain field inside a
prototypical coated sphere (cylinder) with core of material
two and coating of material one in Hashin–Shtrikman
assemblage, is given by

� ¼ pA1I � pA2
dx̂�x̂�I
jxjd

� �
; a < jxj 6 b;

pA3I; jxj 6 a

(
ð6:1Þ
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and the constants A1;A2;A3 are given by

A1 ¼
j2 þ 2 d�1

d l1

h1j2 þ h2j1 þ 2 d�1
d l1

; ð6:2Þ

A2 ¼
�adðj2 � j1Þ

h1j2 þ h2j1 þ 2 d�1
d l1

; ð6:3Þ

A3 ¼
j1 þ 2 d�1

d l1

h1j2 þ h2j1 þ 2 d�1
d l1

: ð6:4Þ

We see from Eq. (6.1) that the strain field inside the core
material (material two) is hydrostatic, thus

hv2ðxÞj�ðxÞj
ri1=r ¼ hv2ðxÞjPH�ðxÞjri1=r

: ð6:5Þ

On the other hand this microstructure attains the lower
bound (5.4) see Lipton (2006). Optimality of the lower
bound (3.2) follows from these observations. Similar argu-
ments show the lower bound (3.1) is attained by the strain
field inside material one of a coated sphere (cylinder)
assemblage with core of material one and coating of mate-
rial two. To show that the strain field inside the coated
sphere (cylinder) assemblage with core phase two and
coating phase one attains the L1 bound (3.3) we use Eqs.
(6.1)–(6.4) to compute the maximum strain inside each
material. It is found that

kv1j�jk1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2 þ 2 d�1

d l1Þ
2 þ ðd� 1Þðj1 � j2Þ2

q
h1j2 þ h2j1 þ 2 d�1

d l1

ffiffiffi
d
p

pj j; ð6:6Þ

kv2j�jk1 ¼
ffiffiffi
d
p
ðj1 þ 2 d�1

d l1Þ
h1j2 þ h2j1 þ 2 d�1

d l1

pj j: ð6:7Þ

A straight forward calculation shows that

kv2j�jk
2
1 � kv1j�jk

2
1 ¼ ðj1 � j2Þ ðð2� dÞj1 þ dj2 þ 4

d� 1
d

l1

� �� �

� d

ðh1j2 þ h2j1 þ 2 d�1
d l1Þ

2 pj j2: ð6:8Þ

It follows from Eq. (6.8) that if d ¼ 3 and the elastic mate-
rials satisfy j1 < 3j2 þ 8l1=3 or if d ¼ 2, then
kv2j�jk1 P kv1j�jk1 so

kj�jk1 ¼ kv2j�jk1 ¼
ffiffiffi
d
p
ðj1 þ 2 d�1

d l1Þ
h1j2 þ h2j1 þ 2 d�1

d l1

pj j ð6:9Þ

and it is evident that the bound (3.3) is attained by the lo-
cal fields inside the coated sphere (cylinder) assemblage.

6.2. The strain field inside simple laminates and optimal
bounds on local fields

For a laminate made from two isotropic phases the local
strain field is piecewise constant under uniform applied
strain ��. Thus

�� ¼ hv1ðxÞ�ðxÞ þ v2ðxÞ�ðxÞi ¼ h1��1 þ h2��2 ð6:10Þ

where ��i is the (constant) field inside the i-th phase. Since
the strain field inside each phase satisfies the equation of
elastic equilibrium equation (2.4) and from the continuity
of the displacement u and the traction rn across the two
phase interface Eqs. (2.6) and (2.7), it follows that
ðC1��1Þn ¼ ðC2��2Þn; ð6:11Þ
��1 � ��2 ¼ k� n; ð6:12Þ

where k is a vector to be determined and n is the layering
direction of the laminate. Solution of the system of Eqs.
(6.10)–(6.12) delivers the local strain field inside each
layer. The fields are given by

��1 ¼ ��þ h2k� n; ð6:13Þ
��2 ¼ ��� h1k� n ð6:14Þ

and

k� n ¼ Að��n� nÞ � Bð��n � nÞ þ C
tr��
d

� �
n� n: ð6:15Þ

Here

A ¼ 2Dl
h~li ;

B ¼ 2Dlðdh~ji þ ðd� 2Þh~liÞ
h~liðð2d� 2Þh~li þ dh~jiÞ ;

C ¼ dð2Dlþ dDjÞ
ð2d� 2Þh~li þ dh~ji ; ð6:16Þ

where h~li ¼ h1l2 þ h2l1; h~ji ¼ h1j2 þ h2j1; hli ¼ h1l1þ
xh2l2, hji ¼ h1j1 þ h2j2; Dl ¼ l1 � l2, and
Dj ¼ j1 � j2. We recall that both deviatoric applied strain
in two dimensions as well as pure shear strain in three
dimensions can be expressed in the form �� ¼ eða� bÞ with
a � b ¼ 0; jaj ¼ 1 and jbj ¼ 1. On choosing n ¼ a or n ¼ b in
(6.15) one easily finds that

k� n ¼ � Dl
h~li

�� ð6:17Þ

and it follows from Eq. (6.13) that

��1 ¼ l2

h~li
��: ð6:18Þ

From this observation it is evident that the strain field in-
side this simple laminate attains the bounds (3.4) and
(3.5). When both materials share the same shear modulus
we find that the local hydrostatic strain fields inside simple
laminates have extremal properties. We demonstrate that
the lower bounds (3.11)–(3.13) are attained by the hydro-
static strain fields inside any simple laminate. For a simple
laminate the strain field inside each material is constant
hence both sides of inequality (5.19) are in fact equal

hv1P
H�ðxÞ : PH�ðxÞi ¼ 1

h1
hv1P

H�ðxÞi
�� ��2 ¼ h1 PH��1

�� ��2;
ð6:19Þ

where ��1 is the constant field inside material one. On the
other hand, since l1 ¼ l2 one observes that (5.23) and
(5.22) imply

1
h1
hv1P

H�ðxÞi
�� ��2 ¼ h1

j2 þ 2 d�1
d l

h1j2 þ h2j1 þ 2 d�1
d l

 !2

PH�
�� ��2:

ð6:20Þ

It easily follows from (6.19) and (6.20) that the hydrostatic
component of the local strain attains the lower bound
(3.11). Given l1 ¼ l2 these arguments show that if the



Fig. 3. Confocal-ellipse assemblage.

B. Alali, R. Lipton / Mechanics of Materials 53 (2012) 111–122 121
strain field is constant inside material one then its hydro-
static part attains the lower bound (3.11). Similar argu-
ments show the optimality of the bound (3.12). The fact
that the dilatational strain inside a rank-one laminate at-
tains the two bounds (3.11) and (3.12), implies that it also
attains the L1 bound (3.13). We suppose that j1 ¼ j2;

d ¼ 2 and we denote the orthonormal system of eigenvec-
tors for a prescribed 2� 2 applied macroscopic strain by
w1;w2. We show that the lower bounds presented in Section
(3.5) are attained by the stress fields inside a rank-one lam-
inate with layering direction n ¼ 1ffiffi

2
p ðw1 þ w2Þ, see Fig. 2.

Choosing j1 ¼ j2 and n ¼ 1ffiffi
2
p ðw1 þ w2Þ in (6.15) gives

k� n ¼ � Dl
h~liP

D��: ð6:21Þ

It now follows from Eq. (6.13) that

PD��1 ¼ l2

h~liP
D�� ð6:22Þ

From this observation it is evident that the Von Mises
equivalent strain field inside this rank-one laminate attains
the bound (3.14).

6.3. The confocal ellipsoid (ellipse) assemblage and optimal
lower bounds on local strain fields for subsets of applied
macroscopic loads

In this section, it is shown that the lower bounds (3.7)–
(3.10) are attained by the strain fields inside the confocal-
ellipsoid and confocal-ellipse assemblages, see Fig. 3.
Assuming that the uniform strain lies in E1 it follows that
there is a confocal-ellipsoid (confocal-ellipse) assemblage
with core of material one and coating of material two asso-
ciated with � such that the local strain inside the core
material is constant and hydrostatic. Since the strain field
in material one is constant, then it follows from earlier
arguments that
Fig. 2. A rank-one layered material.
hv1P
H�ðxÞ : �ðxÞi ¼ h1

j2 þ 2 d�1
d l

h1j2 þ h2j1 þ 2 d�1
d l

 !2

PH�
�� ��2:

ð6:23Þ

On the other hand, since the strain field in material one is
hydrostatic one sees that

hv1P
D�ðxÞ : �ðxÞi ¼ 0 ð6:24Þ

and it is also evident that the lower bound (3.9) is attained.
From Eqs. (6.23) and (6.24), and the fact that
�ðxÞ ¼ PH�ðxÞ þPD�ðxÞ one obtains

hv1�ðxÞ : �ðxÞi ¼ h1
j2 þ 2 d�1

d l
h1j2 þ h2j1 þ 2 d�1

d l

 !2

PH�
�� ��2;

ð6:25Þ

from which optimality of the bound (3.7) follows. Identical
arguments show that the strain field inside material two of
a confocal-ellipsoid (confocal-ellipse) assemblage with
core of material two and coating of material one attains
the bounds (3.8) and (3.10).
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